跳转至

多项式牛顿迭代

本文转载(或修改)自 OI-Wiki

描述

给定多项式 \(G\left(x, y\right)\),已知多项式 \(f\left(x\right)\) 满足:

\[ G\left(x, f\left(x\right)\right)\equiv 0\pmod{x^{n}} \]

且存在数值 \(f_1\) 使 \(G\left(x, y\right)\) 满足以下条件:

  • \(G(0, f_1) = 0\)
  • \(\frac{\partial G}{\partial y}(0, f_1) \neq 0\)

求出模 \(x^{n}\) 意义下的 \(f\left(x\right)\)

Newton's Method

考虑倍增。

首先当 \(n=1\) 时,\(\left[x^{0}\right]G\left(x, f\left(x\right)\right)=0\) 的解需要单独求出,假设中的 \(f_1\) 即为一个解。

假设现在已经得到了模 \(x^{\left\lceil\frac{n}{2}\right\rceil}\) 意义下的解 \(f_{\left\lceil\frac{n}{2}\right\rceil}\left(x\right)\),要求模 \(x^{n}\) 意义下的解 \(f\left(x\right) = f_n\left(x\right)\)

\(G\left(x, f(x)\right)\)\(f(x)\)\(f(x)=f_{\left\lceil\frac{n}{2}\right\rceil}\left(x\right)\) 处进行 Taylor 展开,有:

\[ \sum_{i=0}^{+\infty}\frac{\frac{\partial^i G}{\partial y^i}\left(x, f_{\left\lceil\frac{n}{2}\right\rceil}\left(x\right)\right)}{i!}\left(f\left(x\right)-f_{\left\lceil\frac{n}{2}\right\rceil}\left(x\right)\right)^{i}\equiv 0\pmod{x^{n}} \]

因为 \(f\left(x\right)-f_{\left\lceil\frac{n}{2}\right\rceil}\left(x\right)\) 的最低非零项次数最低为 \(\left\lceil\frac{n}{2}\right\rceil\),故有:

\[ \forall 2\leqslant i:\left(f\left(x\right)-f_{\left\lceil\frac{n}{2}\right\rceil}\left(x\right)\right)^{i}\equiv 0\pmod{x^{n}} \]

则:

\[ \begin{aligned} \sum_{i=0}^{+\infty}\frac{\frac{\partial^i G}{\partial y^i}\left(x, f_{\left\lceil\frac{n}{2}\right\rceil}\left(x\right)\right)}{i!}\left(f\left(x\right)-f_{\left\lceil\frac{n}{2}\right\rceil}\left(x\right)\right)^{i}&\equiv G\left(x, f_{\left\lceil\frac{n}{2}\right\rceil}\left(x\right)\right)+\frac{\partial G}{\partial y}\left(x, f_{\left\lceil\frac{n}{2}\right\rceil}\left(x\right)\right)\left[f\left(x\right)-f_{\left\lceil\frac{n}{2}\right\rceil}\left(x\right)\right]\\ &\equiv 0\pmod{x^{n}} \end{aligned} \]
\[ f_n\left(x\right)\equiv f_{\left\lceil\frac{n}{2}\right\rceil}\left(x\right)-\frac{G\left(x, f_{\left\lceil\frac{n}{2}\right\rceil}\left(x\right)\right)}{\frac{\partial G}{\partial y}\left(x, f_{\left\lceil\frac{n}{2}\right\rceil}\left(x\right)\right)}\pmod{x^{n}} \]

或者

\[ f_{2n}\left(x\right)\equiv f_n\left(x\right)-\frac{G\left(x, f_n\left(x\right)\right)}{\frac{\partial G}{\partial y}\left(x, f_n\left(x\right)\right)}\pmod{x^{2n}} \]

例题

多项式求逆

设给定函数为 \(h\left(x\right)\),有:

\[ G\left(x, y\right)=\frac{1}{y}-h\left(x\right) \]

应用 Newton's Method 可得:

\[ \begin{aligned} f_{2n}\left(x\right)&\equiv f_{n}\left(x\right)-\frac{1/f_{n}\left(x\right)-h\left(x\right)}{-1/f_{n}^{2}\left(x\right)}&\pmod{x^{2n}}\\ &\equiv 2f_{n}\left(x\right)-f_{n}^{2}\left(x\right)h\left(x\right)&\pmod{x^{2n}} \end{aligned} \]

时间复杂度

\[ T\left(n\right)=T\left(\frac{n}{2}\right)+O\left(n\log{n}\right)=O\left(n\log{n}\right) \]

多项式开方

设给定函数为 \(h\left(x\right)\),有:

\[ G\left(x, y\right)=y^{2}-h\left(x\right)\equiv 0 \]

应用 Newton's Method 可得:

\[ \begin{aligned} f_{2n}\left(x\right)&\equiv f_{n}\left(x\right)-\frac{f_{n}^{2}\left(x\right)-h\left(x\right)}{2f_{n}\left(x\right)}&\pmod{x^{2n}}\\ &\equiv\frac{f_{n}^{2}\left(x\right)+h\left(x\right)}{2f_{n}\left(x\right)}&\pmod{x^{2n}} \end{aligned} \]

时间复杂度

\[ T\left(n\right)=T\left(\frac{n}{2}\right)+O\left(n\log{n}\right)=O\left(n\log{n}\right) \]

多项式指数函数

设给定函数为 \(h\left(x\right)\),有:

\[ G\left(x, y\right)=\ln{y}-h\left(x\right) \]

应用 Newton's Method 可得:

\[ \begin{aligned} f_{2n}\left(x\right)&\equiv f_{n}\left(x\right)-\frac{\ln{f_{n}\left(x\right)}-h\left(x\right)}{1/f_{n}\left(x\right)}&\pmod{x^{2n}}\\ &\equiv f_{n}\left(x\right)\left(1-\ln{f_{n}\left(x\right)+h\left(x\right)}\right)&\pmod{x^{2n}} \end{aligned} \]

时间复杂度

\[ T\left(n\right)=T\left(\frac{n}{2}\right)+O\left(n\log{n}\right)=O\left(n\log{n}\right) \]